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INTRODUCTION

Recently, in industrial densely populated ar-
eas, the problem of water pollution and a sharp 
increase in water mineralization of surface wa-
ters has become more acute (Biggs et al. 2015, 
Radovenchyk et al. 2021, Trus et al. 2017). This 
is caused by the discharge of mine and industrial 
wastewater, as well as effluents from thermal 
power plants (DiGiulio et al. 2015, Abualhaija 
and Mohammad 2021, Trus and Gomelya 2021). 
Today, the most highly efficient technologies for 
water desalination include baromembrane pro-
cesses (Cohen et al. 2017, Ashfaq et al. 2019, 
Trus and Gomelya 2021). Reverse osmosis 
units provide high and guaranteed stable clean-
ing quality throughout the operation (Miller et 
al. 2015). The main task today is to achieve the 
maximum service life of membrane elements. 
The service life of membranes is determined 
mainly by the drop in their productivity, and 

the operational efficiency of membrane water 
treatment systems is limited mainly by their pol-
lution degree (Da’na et al. 2020, Kucera et al. 
2019, Yelemanova al. 2021).

At present, in water-deficient industrial regions, 
highly mineralized waters with high hardness are 
used in cooling systems (Filloux et al. 2015, Croué 
et al. 2013, Sweity et al. 2013, Trus et al. 2020). 
These waters are not suitable for use in cooling sys-
tems without special treatment (Yelemanova et al. 
2021, Remeshevska et al. 2021, Trus et al. 2019). 
The use of effective stabilizers allows abandoning 
expensive water softening and deaeration systems, 
as well as ensuring long-term operation of heat 
exchange equipment. Despite the large number of 
studies, the stabilization of such waters to sedi-
ments is not a sufficiently explored question (Popov 
et al. 2019, Ang et al. 2016, Khan et al. 2013).

The main factor limiting the widespread use 
of reverse osmosis (RO) installations in drinking 
water production and industrial water treatment 
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is the scaling of sparingly soluble salts (Go-
lovesov et al. 2021, Chaussemier et al. 2015, 
Shemer et al. 2013).

In order to reduce the scale of gypsum and 
silicon dioxide, it is necessary to use antiscalants 
with different functionalities, so when cleaning 
wastewater containing different types of scale, it 
is important to select a reagent that provides maxi-
mum effect (Yin et al. 2021, Pramanik et al. 2017, 
Rashed et al. 2016, Mi and Elimelech 2013).

Phosphonate antiscalants are widely used in 
the processes of reverse osmosis desalination of 
water to prevent scale formation and improve 
the quality of purified water. In reverse osmosis 
desalination of groundwater at a sampling rate 
of 85% (Ca2+ = 765 mg/L, PO4

3− = 13–15 mg/L 
and pH = 7.6), various antiscalants were used 
to inhibit the formation of calcium phosphate. 
(Mangal et al. 2021). However, it is desirable to 
remove them before disposing of the RO concen-
trate, as the presence of phosphonate antiscalants 
can prevent the removal of hardness from the 
concentrates and affect the ecosystem. A highly 
effective magnetic adsorbent (magnetic La/Zn/
Fe3O4@PAC composite) can be used to remove 
the phosphonate antiscalant (Li, C. et al. 2021).

In (He et al. 2009) it was shown that the K752 
antiscalant can significantly extend the induction 
period for the gypsum nucleation, while the GHR 
antiscalant extends the induction period for calcite 
nucleation; even at a dosage of only 0.6 mg/L, 
they slow down the rate of crystal deposition. In 
(Qiang et al. 2013) it was shown that scale inhibi-
tor was prepared by modified chrome shavings 
hydrolyzing collagen and the scale inhibitor had 
good ability on calcium carbonate scale inhibition.

The efficacy of scale inhibitors for a reverse 
osmosis desalination plant has been developed 
and evaluated (Chesters et al. 2009, Pervov & An-
drianov 2017). Adding antiscalants into the solu-
tion slows down the scale on the membrane, as 
evidenced by membrane flux, morphology and 
layer thickness (Chen et al. 2021).

Management of scale formation can be 
achieved at the design stage by the inclusion of 
unit processes to the scale forming constituents 
or by the application of the antiscalants that delay 
the onset of nucleation (Antony et al. 2011).

The developed methods of softening of a scale 
deposit mainly do not depend on membrane mate-
rials, whereas expediency of creation of the scale-
resistant membranes is specified but is not reached 
in full in the literature. Accordingly, potential 

design strategies and issues related to the develop-
ment of new membrane materials with improved 
scale resistance are discussed, and future research 
needs are proposed (Tong et al. 2019).

Modification of the membrane surface and 
development of a new material can be an effec-
tive strategy to reduce the scaling of the mem-
brane (Baoxia et al. 2010, Du et al. 2018, Kang et 
al. 2012). The methodology for predicting scaling 
by membrane distillation (MD), which consid-
ers the thermodynamics, kinetics and mechanics 
of the liquid, was developed and experimentally 
confirmed using calcium sulfate (Rahman 2013, 
Warsinger et al. 2017, Kavitskaya et al. 2000).

This review describes in detail the various 
contaminants and contamination mechanisms in 
the membrane distillation process, their possible 
mitigation and control methods, and characteriza-
tion strategies that can help in understanding and 
minimizing the contamination problem (Tijing et 
al. 2015, Litynska et al. 2019).

Despite the significant amount of research 
and publications, the development of effective 
scale stabilizers is very important and relevant.

Thus, the development of methods for ef-
fective stabilization water treatment will reduce 
corrosion and scale formation in heat exchange 
equipment, as well as allows switching to closed 
systems of water consumption and rational use 
of water (Gomelya et al. 2020, Vorobyova et al. 
2019). The development of scientific bases of re-
source-saving technologies will increase the level 
of ecological safety of objects, region and country.

MATERIALS AND METHODS

The processes were studied using a Filmtec 
TW30-1812-50 low pressure reverse osmosis 
membrane cassette. A low-mineralized solution, 
similar in composition to the water from Toretsk: 
(H = 10.3 mg-eq/dm3, C (Ca2 +) = 3.4 mg-eq/dm3, 
C (Mg2 +) = 6.9 mg-eq/dm3, L = 4.6 mg-eq/dm3, 
C (SO4

2-) = 15.0 mg-eq/dm3, C (Cl-) = 3.1 mg-
eq/dm3, pH = 8.47) was used as a medium. After 
filtering the solution, the turbidity decreased from 
50.0 mg/dm3 to 0.0 mg/dm3; chromaticity - from 
90.0 degrees Pt/Co up to 22.0 degrees Pt/Co.

The process of reverse osmosis desalination 
of water was carried out using 10 dm3 of model 
solution. By means of a pump, water was fed into 
a cassette with a reversed osmosis membrane. 
The concentrate was returned to the container 
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with the initial solution, the permeate was taken 
in a separate container. The pressure in the sys-
tem was maintained by a valve that regulates the 
selection of concentrate. After sampling each 
dm3 of purified solution, the permeate and con-
centrate were analyzed for chlorides, sulfates, 
hardness ions and alkalinity was determined. 
The degree of permeate selection was varied 
from 10 to 90 %. Sulfates were determined by 
using the photometric method, chlorides with the 
Moore method, whereas alkalinity and hardness 
by means standard methods.

Membrane performance (transmembrane 
flow rate) was determined by the formula: 

𝐽𝐽𝐽𝐽 =
∆𝑉𝑉𝑉𝑉
𝑆𝑆𝑆𝑆 ∙ ∆𝑡𝑡𝑡𝑡

 
 

(1)

where: ∆V is the volume of permeate (dm3) that 
passed through the membrane with area S 
(m2) during the sampling ∆t (h).

When conducting the studies to assess the 
effectiveness of scale stabilizers a thermostat 
was used. The samples of 100 ml were kept at 
a temperature of 60 °C for 6 hours. The choice 
of temperature is due to the fact that real water 
circulation systems operate at a temperature of 
40–60 °C. As inhibitors were used hydrolyzed 
polyacrylamide (HPAA) after ozonation of its 5% 
solution for 1 hour, hydrolyzed polyacrylonitrile 
(HPAN) after ozonation of 5% solution for 1 hour 
and HPAN after sonication of 1% solution for 
20 minutes. Improvement of the efficiency of re-
agents is achieved by ozonation or physical modi-
fication with low-frequency sound waves (USB). 
Doses of these reagents were 0.5–15.0 mg/dm3. 
After cooling, the samples were filtered, and the 
residual water hardness was determined.

The stabilizing effect was calculated by the 
formula:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �1 −
∆𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖
∆𝐻𝐻𝐻𝐻

� ∙ 100% (2)

∆𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 = 𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 (3)

∆𝐻𝐻𝐻𝐻 = 𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
 

(4)
The anti-scale effect was calculated by the 

formula:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻
∙ 100% 

 

(5)

where: SE – stabilizing effect, %; ASE – anti-scale ef-
fect, ∆H – reduction of hardness in the blank 
experiment, mg-eq/dm3; ∆Hi – reduction of 

hardness in the experiment with a scale 
inhibitor, mg-eq/dm3; Hres – residual 
hardness in the blank, mg-eq/dm3; Hi –
residual hardness in the sample with a 
stabilizer, mg-eq/dm3.

RESULTS AND DISCUSSION

Improving the quality of used water reduces 
its discharge to purge systems, which reduces the 
water intake from natural sources and discharge 
of mineralized water into reservoirs, which leads 
to their pollution. Development of effective scale 
stabilizers allows developing the resource-saving 
technologies of water use. 

The methods of combating salt deposits are 
aimed at preventing the loss of salts or remov-
ing the formed salt deposits (Amjad and Demadis 
2015, Chauhan et al. 2015). The classification of 
these methods is presented in Figure 1.

There are several impurities that significant-
ly reduce the service life of membranes (Ruen-
gruehan et al. 2020, Gomelya et al. 2014). The 
first group includes insoluble solids, suspended 
and colloidal particles. The second group in-
cludes the compounds, the presence of which 
in water leads to the formation of solid inclu-
sions (Kassymbekov et al. 2021, Sevostianov et 
al. 2021). It is possible to remove the substances 
belonging to the first group at the expense of 
mechanical methods, besides preliminary clari-
fication of water on the filter leads to increase 
in productivity of a membrane (Polyakov et al. 
2019). When filtering the model solution at a 
pressure of 0.3 MPa, the productivity of the in-
stallation decreases gradually (Fig. 2, Table 1) as 
the mineralization of the concentrate increases 
with increasing degree of selection of permeate. 
Pre-clarification of water (curve 2) leads to an 
increase in installation productivity and has little 
effect on its selectivity for chlorides, sulfates, 
hardness ions and hydrocarbons.

In this case, the decrease in membrane pro-
ductivity with increasing degree of permeate se-
lection is due to the increase in osmotic pressure 
along with the salt content in the concentrate. 
However, in general, the decrease in the pro-
ductivity of membrane installations by 95–97% 
is determined by the contamination of the mem-
brane surface and only by 3–5% by the compac-
tion of their capillary-porous structure. Funda-
mentally dangerous compounds that promote 
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sedimentation on membranes include hardness 
salts – compounds of calcium and magnesium 
in the form of carbonates, bicarbonates and sul-
fates (Sharma et al. 2020). One of the promising 
ways to prevent membrane contamination is the 
adding of antiscalant (sedimentation inhibitor). 

Since under the actual conditions at room tem-
perature, the carbonate deposits on the membrane 
are formed rather slowly, the effectiveness of an-
tiscalants was assessed using the express method. 
It was based on determining the stability of con-
centrates of reverse osmosis water purification. 

Figure 1. Classification of methods of combating salt deposits

Figure 2. The dependence of the performance of the reverse osmosis filter on the 
degree of selection of permeate during desalination of the model solution
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Studies were performed in the presence of an an-
tiscalant and without an antiscalant. During the 
desalination of the model solution at a sampling 
rate of ~ 80%, a concentrate is formed with the 
following characteristics: H = 50.0 mg-eq/dm3, A 
= 23.0 mg-eq/dm3, SO4

2- = 75.0 mg-eq/dm3, Cl- = 
15.0 mg-eq/dm3, pH = 8.71.

The use of highly mineralized waters leads 
to intensive sedimentation, especially at elevated 
temperatures, resulting in the failure of pipelines 
and equipment. Therefore, it is necessary to use 
sediment inhibitors.

The effectiveness of scale inhibitors depends 
on the quality of the source water. This water is 
unstable to scaling, because when heated, the 
hardness decreases from 50 to 38 mg-eq/dm3 at a 
temperature of 60 °C.

If the polyphosphates are used long-term, the 
hydrolysis to orthophosphates occurs. As a result 
of this polyphosphates lose their activity. In addi-
tion, phosphorus is a biogenic element that leads 
to increased biofouling in buildings and commu-
nications. HPAN is a stable substance, so it does 
not decompose chemically in water at tempera-
tures in the range of 0–100 °С. This reagent is an 
effective inhibitor of scaling of highly mineral-
ized waters at temperatures up to 100 °C when 
used in concentrations of 0.5–15 mg/dm3.

Evaluation of the effectiveness of sediment 
inhibitors was carried out by changing the hard-
ness of mineralized water when heated to a tem-
perature of 60 °C in the presence of inhibitors. 
The results are shown in Tables 2, 3.

The stabilizing effect of HPAN and HPAA 
without treatment in highly mineralized waters 
at a dose of 1–15 mg/dm3 is 39–43%. Ultrasonic 
or ozonation treatment of these reagents can in-
crease the stabilizing and anti-scale effects.

As it can be seen from Table 3, the HPAN in 
concentrations of 0.5–5.0 mg/dm3 appeared inef-
fective; however, an increase of a dose to 5–15 
mg/dm3 showed rather high stability of water in 
relation to scaling.

The stabilizing effect when using HPAA 
reached 16.7% at a dose of 1 mg/dm3 and 45.8% 
at a dose of 2 mg/dm3. When increasing the dose 
of HPAA to 5.0 mg/dm3, this inhibitor provided 
100% water stability (Fig. 3).

HPAN at a concentration of 5 mg/dm3 for 
highly mineralized waters provides a stabiliz-
ing effect of 99.8%, and the anti-scale effect of 
99.2% (Fig. 4). Therefore, the obtained results 
indicate the potential of the selected reagents as 
stabilizers of scale formation.

Table 1. Dependence of membrane selectivity on the degree of permeate selection during filtration of model 
solution (I) and solution after filtration (II)

Z, %
R, %

І ІІ

Hardness SO4
2- Cl- Hardness SO4

2- Cl-

10 99.66 99.49 91.13 99.69 99.21 91.14

20 99.31 99.22 89.92 99.71 99.09 91.96

30 99.31 99.09 88.99 99.70 98.98 90.97

40 99.33 99.07 89.33 99.71 98.99 90.15

50 99.45 99.14 89.67 99.71 99.14 90.11

60 99.57 99.23 90.69 99.72 99.23 90.15

70 99.62 99.33 90.98 99.77 99.36 90.72

80 99.74 99.42 92.21 99.82 99.53 92.61

90 99.73 99.63 94.29 99.87 99.60 94.63

Table 2. The dependence of the stability of the concentrate on the dose of HPAA after ozonation at 60 °C
Доза, мг/дм3 H, mg-eq/dm3 Hres., mg-eq/dm3 ∆H, mg-eq/dm3 СЕ, %

0 50.0 38.0 12.0 -

0.5 50.0 39.0 11.0 8.3

1.0 50.0 40.0 10.0 16.7

2.0 50.0 43.5 6.5 45.8

5.0 50.0 49.9 0.0 99.2



211

Journal of Ecological Engineering 2022, 23(1), 206–215

CONCLUSIONS

It was established that pre-purification of 
the model solution before reverse osmosis de-
salination helps increase the productivity of 
the membrane and has little effect on its selec-
tivity for chlorides, sulfates, hardness ions and 

bicarbonates. Evaluation of the efficiency of us-
ing HPAN and HPAA as a stabilizer of scale for-
mation for concentrates of reverse osmotic desali-
nation of water (highly mineralized waters) was 
performed. HPAA at a concentration of 5 mg/dm3 
for the waters with H = 50 mg-eq/dm3 at T = 60 °C 
and t = 6 h provides a stabilizing effect at the level 

Table 3. The dependence of the stability of the concentrate on the dose of HPAN at 60 °C
Доза, мг/дм3 H, mg-eq/dm3 Hres., mg-eq/dm3 ∆H, mg-eq/dm3 СЕ, %

0 50.0 38.0 12.0 -

HPAN after sonication

0.5 50.0 39.5 10.5 12.5

1.0 50.0 41.5 8.5 29.2

2.0 50.0 42.0 8.0 33.3

5.0 50.0 42.5 7.5 37.5

8.0 50.0 43.4 6.6 45.0

10.0 50.0 44.5 5.45 54.2

12.0 50.0 45.6 4.4 63.3

15.0 50.0 46.7 3.3 72.5

HPAN after ozonation

0.5 50.0 41.0 9.0 25.0

1.0 50.0 42.0 8.0 33.3

2.0 50.0 43.5 6.5 45.8

5.0 50.0 44.0 6.0 50.0

8.0 50.0 45 5 58.3

10.0 50.0 45.8 4.2 65.0

12.0 50.0 46.4 3.6 70.0

15.0 50.0 47.1 2.9 75.8

Figure 3. The effect of HPAA dose at 60 °C on water stability; 1 – anti-scale effect; 2 – stabilizing effect



212

Journal of Ecological Engineering 2022, 23(1), 206–215

of 37.5–50%, and the anti-scale effect at 85–88%. 
With increasing reagent concentration to 15 mg/
dm3, the anti-scale effect reaches 72.5–75.8% and 
the stabilizing effect 93.4–94.2%. Direct propor-
tion of residual hardness to dose was found for 
HPAN. HPAN was shown to be a highly effective 
scale inhibitor at a dose of 5.0 mg/dm3, with a 
stabilizing effect of 99.8%.
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